

Classification of the technology

Manufacturing process:

 Turning (longitudinal / facing turning, grooving / parting off, internal / external turning, etc.)

Mode:

1-dimensional (longitudinal)

Oscillation frequency:

Low frequency 1...100 Hz

Oscillation generation:

Non-resonant

Orientation to process kinematics:

In feed direction

Productivity

Speed

Chip breaking behavior as a function of the oscillation parameters

- Material C55
- v_c = 190 m/min
- $a_p = 0.5 \, \text{mm}$
- $f = 0.1 \, \text{mm}$

With cut interruption

 \hat{A} = 0,11 mm | f_{vib} = 13 Hz

 \hat{A} = 0,11 mm | f_{vib} = 65 Hz

Without cutting interruption

 \hat{A} = 0,08 mm | f_{vib} = 13 Hz

 $\hat{A} = 0.08 \text{ mm} \mid f_{vib} = 65 \text{ Hz}$

USP of oscillation technology

- Short chips in any material
- Safe chip breaking
 - for all:
 - Cutting values
 - Tool geometries
 - and independent of:
 - Material batch fluctuations
 - Tool wear
- Adjustable chip length with oscillation parameters
- Robust and safe chip breaking!

Problem definition: In the chip flow - from machining to disposal

- 1. Formation of long single chips and tangled chips Poor chip breaking reduces process reliability!
- 2. Formation of chip nests Chip nests increase the risk of collision!
- 3. Discharge by chip conveyor is hindered Process stop for manual removal of chips!

- 4. Low bulk density in the chip container Frequent changing and transport of containers!
- 5. Poor output rates during crushing Inefficient chip processing!

Product line - VibroCut oscillate

Innovative, retrofittable tool holders:

- Driven with live tool of the turret
- Rigid bearing of the tool holder
- Highest oscillation parameters

Performance parameters:

Frequency: $f_{vib} = 1...100 \text{ Hz}$

Stroke (adjustable): $\hat{A} = 0...0.6 \text{ mm}$

Process forces: $f_{c.max} = 9 \text{ kN}$

Unique position:

- Unique performance
- Gentle on the machine compared to control cycles
- Reliable and adjustable chip breaking
- Control-independent
- Flexible retrofitting independent of the machine manufacturer!

VibroCut oscillate - Process variants

VibroCut oscillate - Process variants

Oscillation-assisted turning

Application for longitudinal turning of stainless steel (valves, surgical components etc.)

Material: Stainless steel 1.4307 (X2CrNi18-9)

Tool: VBMT 160404-MM 2015

• Cutting values: $a_p = 0.2 \text{ mm}$; f = 0.08 mm; $v_c = 200 \text{ m/min}$

• Oscillation parameters: f_{OS} = 27 Hz; \hat{A} = 0.115 mm

Problem: long tangled chips, scratched surfaces and component rejects

Customer benefits

- ✓ Short chips
- ✓ No scratched surfaces

Improved process reliability

No component rejects

Automation possible

Conventional turning

VibroCut oscillate

Oscillation-assisted turning

Application for internal turning of nickel-based alloys (engine components, boring bars etc.)

• Material: Inconel 718

• Tool: DNMG 150608-MR 4315

• Cutting values: $a_p = 0.2 \text{ mm}$; f = 0.15 mm; $v_c = 30 \text{ m/min}$

• Oscillation parameters: f_{OS} = 7...15 Hz; \hat{A} = 0.19 mm

> Problem: long tangled chips

Customer benefits

- ✓ Short chips
- ✓ No chip jamming on boring bar

Improved process reliability

No machine downtimes due to machine downtimes

Automation possible

Conventional turning

VibroCut oscillate

Oscillation-assisted turning

Application for longitudinal turning of plastics (distance parts, sockets etc.)

Material: PP (schwarz)

Tool: VCGT 160408FN-ALU

• Cutting values: $a_p = 1 \text{ mm}$; f = 0,3 mm; n = 2.000 m/min

• Oscillation parameters: f_{OS} = 50 Hz; \hat{A} = 0,45 mm

Problem: long tangled chips, no automation possible

Customer benefits

- ✓ Short chips
- ✓ No process problems due to chips

Improved process reliability

No machine downtimes due to machine downtimes

Automation possible

Conventional turning

VibroCut oscillate

Benefits of VibroCut oscillate

Increase in machine availability

Improving process reliability

Enabling automation and unmanned operation

Improvement - chip handling and processing

Robust improvement of efficiency and cycle times

ROI < 1 year

ROI-calculator: https://vibrocut.de/en/cost-savings-with-vibroturn/

ROI < 1 year

Increase productivity

Increase TCO and OEE

Greater process reliability

Improvement of chip handling and processing

Automation and unmanned operation

Prevention of accidents at work

Calculation example for controlled chip breaking

Hourly machine rate: 45 €/h

Planned occupancy time: 6000 h/year 750 shifts/year

Machine downtimes due to chip breaking: 2 - 6 minutes / h

ROI < 1	year
-------------------	------

		•
Standstill due to Chip breaking	Productivity increase [per a]	Savings per machine
2 minutes / h	200h (3,3%)	9,000 €
4 minutes / h	400h (6,7%)	18,000 €
6 minutes / h	600h (10%)	27,000 €

VibroCut – Hybdrid machining

Contact details

Dr.-Ing. Oliver Georgi (CEO)

+49 371 335656-0

VibroCut GmbH

Annaberger Str. 24009125 ChemnitzGermany

www.vibrocut.de

"VibroCut combines technique and technology for hybrid machining"

