

Classification of technology

Manufacturing process:

 Grinding (drilling / coordinate grinding)

Mode:

1-dimensional (longitudinal)

Frequency:

High frequency (>16,000 Hz) - Ultrasound

Generation:

Resonant

Orientation to process kinematics:

Various

Process reliability

Productivity

Physical mechanisms and technological effects

Material effect	Defined removal through micro-hammering		Increase in productivity
	Reduction of process forces		Improvement in quality (roughness and edge chipping)
Friction	No clogging of the grinding tools		Increased tool life
	Reduced tool wear		
← Kinematics	Multi-axis movement		Increasing process reliability
	Self-sharpening of the abrasive grains	,,,,	Cost savings

Application for deep drilling of quartz glass (wafer chucks etc.)

• Material: Quartz glass

Drill bit / depth: Diamond Ø4mm / 180 mm

• Cutting values: $v_f = 5...8 \text{ mm/min; n} = 5,000 \text{ rpm}$

• Ultrasound parameters: $_{US}f$ = 17.15 kHz; \hat{A} = 3.5 μ m

> **Problem:** Unstable process

Customer benefits

- ✓ Process-safe deep drilling possible
- ✓ Glass cores remain undamaged
- ✓ Feeder increase of 60% possible

Improved process reliability

Increase in productivity and Feed rate increase > 50%

Increase in component quality

Application for grinding quartz glass (wafer chucks etc.)

• Material: Quartz glass

• Tool: Diamond grinding tool Ø10mm

• Cutting values: $v_f = 120...200 \text{ mm/min};$ $a_p = 0.2 \text{ mm; } n = 4,547 \text{ rpm}$

• Ultrasound parameter: $f_{\rm US}$ = 18.5 kHz; $\hat{\rm A}$ = 4...12 $\mu {\rm m}$

> **Problem:** Low productivity

Customer benefits

- ✓ Process force reduction 56%
- ✓ Potential for increasing the cutting value

Improved process reliability

Increase in productivity and Feed rate increase > 100%

Increase in component quality

Application for grinding ceramics (sealing elements etc.)

Material: Aluminum oxide ceramic Al O₂₃

• Tool: Diamond grinding tool Ø10mm

• Cutting values: $v_f = 300...500 \text{ mm/min};$ $a_n = 0.06 \text{ mm; } n = 4,547 \text{ rpm}$

• Ultrasound parameters: $_{US}f$ = 18.5 kHz; \hat{A} = 4...12 μ m

> **Problem:** low productivity

Customer benefits

- ✓ Process force reduction 56%
- ✓ Potential for increasing the cutting value

Improved process reliability

Increase in productivity and feed rate increase > 100%

Increase in component quality

Ultrasonic-assisted grinding with VibroCut ultrasonic

Advantages of grinding hard materials with VibroCut ultrasonic

Increase in productivity

Increasing process reliability

ROI < 1 year

ROI-calculator: https://vibrocut.de/en/cost-savings-with-vibrodrill-ultrasonic/

Ultrasonic-assisted grinding with VibroCut ultrasonic

ROI < 1 year

Increase productivity

Increase tool life

Improved surface quality

Greater process reliability

Reduction of microcracks

Avoidance of rejects

Calculation example for increasing the feed rate

Hourly machine rate: 75 €/h

Planned occupancy time: 4000 h/year

500 shifts/year

Proportion of main time loops to cycle time 80% Increase in cutting values 20...100%

ROI < 1 year

Feed rate increase	Productivity increase	Savings per machine
20%	13,3%	39.900 €
50%	26,7%	80.100 €
100%	40%	120.000 €

https://vibrocut.de/en/cost-savings-with-vibrodrill-ultrasonic/

VibroCut – Hybdrid machining

Contact details

Dr.-Ing. Oliver Georgi (CEO)

+49 371 335656-0

Frank Seinschedt (Sales Director)

+49 178 4602576

VibroCut GmbH

Annaberger Str. 240 09125 ChemnitzGermany

www.vibrocut.de

"VibroCut combines technique and technology for hybrid machining"

