

Classification of technology

Manufacturing process:

Drilling and deep drilling

Mode:

1-dimensional (longitudinal)

Frequency:

• High frequency (>16,000 Hz) - Ultrasound

Generation:

Resonant

Orientation to process kinematics:

• In feed direction

Observe the protection notice in accordance with ISO 16016, particularly in the event of a property right being granted.

Productivity

Physical mechanisms and technological effects

Material effect	Reduction of process forces	\bigcirc	Increase in productivity
	Reduction of burr formation		Improving quality
	Improving straightness		
Friction	Reduction of tool wear		Increased tool life
	Improved chip removal		Enhanced process reliability
Kinematics	Reduction of built-up edge formation	^~~	Cost savings

Classification of technological effects and customer benefits by material			
 Technological effects and benefits based on the material effect 		Ferrous materials	Non-ferrous materials
 Material effect and force reduction primarily for non-ferrous materials Effects and benefits based on this only with corresponding materials For ferrous materials, the field of application is limited to deep drilling and the utilization of friction reduction. High-performance applications Aluminum or copper alloys Materials that are difficult to machine (titanium or nickel-based alloys) 	Process force reduction	-	x
	Feed rate increase	-	Х
	Chip removal	х	х
	Chip breaking	(X)	(X)
	Increase tool life	(X)	x
	Grass reduction	-	x
	Better straightness	-	X

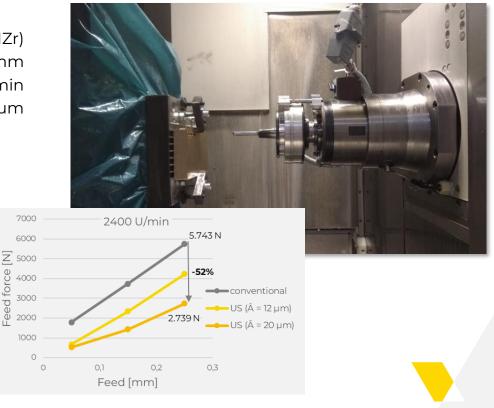
Observe the protection notice in accordance with ISO 16016, particularly in the event of a property right being granted.

Application for drilling copper alloys (plugs, welding electrodes etc.)

- Material: Copper alloy 2.1293 (CuCr1Zr)
- Drill / drilling depth: carbide Ø 12 mm / 40 mm
- Cutting values: *f* = 0.05...0.25mm; v_c = 90 m/min
- Ultrasound parameters: $f_{\rm US}$ = 17 kHz; Â = 12...20 μm
- > **Problem:** High machining forces

Customer benefits

- ✓ Process force reduction 52%
- ✓ More stable process


Improved process reliability

Increase in productivity and Feed rate increase > 50%

Increase in component quality (center run)

Observe the protection notice in accordance with ISO 16016, particularly in the event of a property right being granted

Application for drilling aluminum die casting alloys (housing components, cylinder heads, aluminum rims, etc.)

- Material: EN AC-42000 (AlSi7Mg)
- Drill bit / depth: PCD, straight Ø 8 mm / 67 mm
- Cutting values: $f = 0.12...0.35 \text{ mm}; v_c = 138 \text{ m/min}$
- Ultrasound parameters: f_{US} = 20 kHz; Â = 15...25 µm
- > **Problem:** Cost pressure in series production

Customer benefits

- ✓ Process force reduction 55%
- ✓ More stable process

Improved process reliability

Increase in productivity and Feed rate increase > 50%

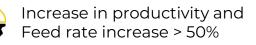
Increase in component quality (center run)

Observe the protection notice in accordance with ISO 16016, particularly in the event of a property right being granted

force [N]

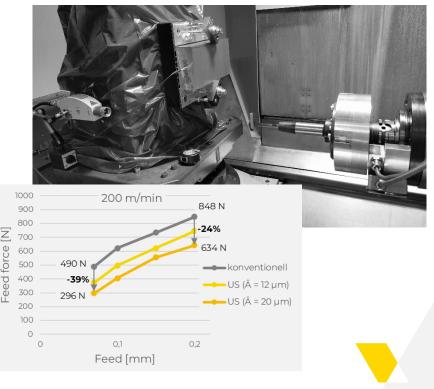
Feed 1

Application for drilling wrought aluminum alloys (structural components in aviation)


- Material: EN AW-7075 (AlZn5.5MgCu)
- Drill bit / depth: carbide straight Ø 8 mm / 20 mm
- Cutting values: *f* = 0.07...0.2 mm; v_c = 200 m/min
- Ultrasound parameter: $f_{\rm US}$ = 27 kHz; Â = 12...20 µm
- > Problem definition: Instabilities due to chip removal

Customer benefits

- ✓ Process force reduction 24...39%
- More stable process due to better chip removal



Improved process reliability

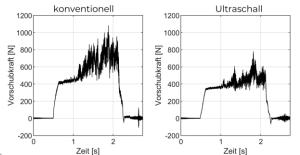
Increase in component quality (center run)

Application for drilling wrought aluminum alloys (structural components in aviation)

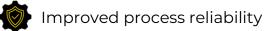
- Material: EN AW-7075 (AlZn5.5MgCu)
- Drill bit / depth: Carbide straight Ø 8 mm / 20 mm
- Cutting values: $f = 0.07...0.2 \text{ mm}; v_c = 200 \text{ m/min}$
- Ultrasound parameter: $f_{\rm US}$ = 27 kHz; Â = 12...20 μm
- > Problem definition: Instabilities due to chip removal

Customer benefits

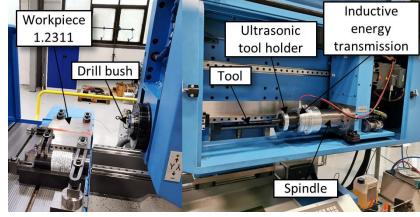
- ✓ Process force reduction 24...39%
- More stable process due to better chip removal

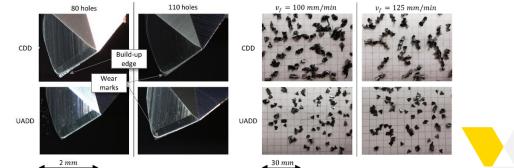

Improved process reliability

Increase in component quality (center run)



Application for deep drilling of tool steel (molds for toolmaking)


- Material: Tool steel 1.2311 (40CrMnMo7)
- Drill bit / depth:
 ELB Ø 6 mm / 160 mm
- Cutting values: f = 0.06 mm; $v_c = 51$ m/min
- Ultrasound parameters: $f_{\rm US}$ = 19.5 kHz; Â = 5.7 μ m
- > **Problem:** Instabilities due to chip removal


Customer benefits

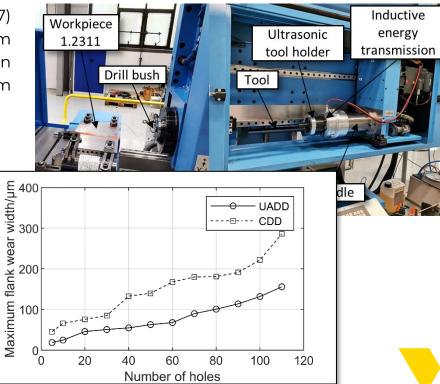
- More stable process due to better chip shape and removal
- Reduction of tool wear

S Longer tool life

Observe the protection notice in accordance with ISO 16016, particularly in the event of a property right being granted.

Application for deep drilling of tool steel (molds for toolmaking)

- Material: Tool steel 1.2311 (40CrMnMo7)
- Drill bit / depth: ELB Ø 6 mm / 160 mm
- Cutting values: $f = 0.06 \text{ mm}; v_c = 51 \text{ m/min}$
- Ultrasound parameters: USf = 19.5 kHz; Â = 5.7 µm
- > **Problem:** Instabilities due to chip removal


Customer benefits

- More stable process due to better chip shape and removal
- Reduction of tool wear

Improved process reliability

Sector Longer tool life

Inductive

energy

transmission

Ultrasonic

tool holder

Tool

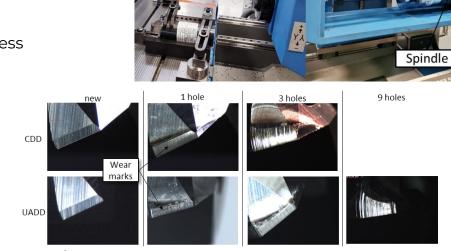
...........

Application for deep drilling of nickel-based alloys (drill heads, engine components etc.)

- Material: Monel k-500 2.4375
- Drill bit / depth: ELB Ø 6 mm / 145 mm
- Cutting values: f = 0.011mm; v_c = 30 m/min
- Ultrasound parameters: $f_{\rm US}$ = 19.5 kHz; Â = 4.5 µm
- > Problem: Unstable process / high wear

Customer benefits

- Realization of stable deep drilling process
- Reduction of tool wear


Improved process reliability (Stable deep drilling process)

Productivity and feed rate increase

Longer tool life (due to ultrasound 300%)

Drill bush

Workpiece

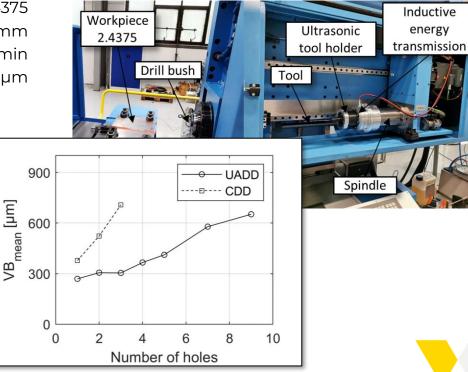
2.4375

Application for deep drilling of nickel-based alloys (drill heads, engine components etc.)

- Material: Monel k-500 2.4375
- Drill bit / depth:
 ELB Ø 6 mm / 145 mm
- Cutting values: f = 0.011mm; v_c = 30 m/min
- Ultrasound parameters: $f_{\rm US}$ = 19.5 kHz; Â = 4.5 µm
- > **Problem:** Unstable process / high wear

Customer benefits

- Realization of stable deep drilling process
- Reduction of tool wear


Improved process reliability (Stable deep drilling process)

Productivity and feed rate increase

Longer tool life (due to ultrasound 300%)

Advantages of using VibroCut ultrasonic for drilling and deep hole drilling

Increased cutting values and productivity

ROI < 1 year

Increase productivity

Increase tool life

Increase TCO and OEE

Improving process reliability

Reduction of burr formation

Improving straightness

Calculation example for increasing the feed rate

Hourly machine rate: 75 €/h

Planned occupancy time: 6000 h/year 750 shifts/year

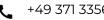
Proportion of main drilling time to cycle time 45% Increasing the drilling feed rate

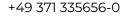
	-	ROI < 1 year
Feed rate increase	Productivity increase	Savings per machine
25%	9.0%	40,500 €
50%	15.0%	67,500 €
100%	22.5%	101,250 €

https://vibrocut.de/en/cost-savings-with-vibrodrill-ultrasonic/

Observe the protection notice in accordance with ISO 16016, particularly in the event of a property right being granted.

VibroCut – Hybdrid machining

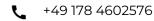



Contact details

Dr.-Ing. Oliver Georgi (CEO)

oliver.georgi@vibrocut.de M

VibroCut GmbH


- Annaberger Str. 240 0 09125 Chemnitz Germany
- □ www.vibrocut.de

"VibroCut combines technique and technology for hybrid machining"

frank.seinschedt@vibrocut.de M

